

EVOLUÇÃO DE VPN TRADICIONAL PARA EVPN

Agenda

- 1. Contexto e Motivação para EVPN
- 2. Desafios das VPNs Tradicionais
- 3. Benefícios Técnicos do EVPN
- 4. Opções de Evolução (Integração vs. Interworking)
- 5. Futuro e Conclusões

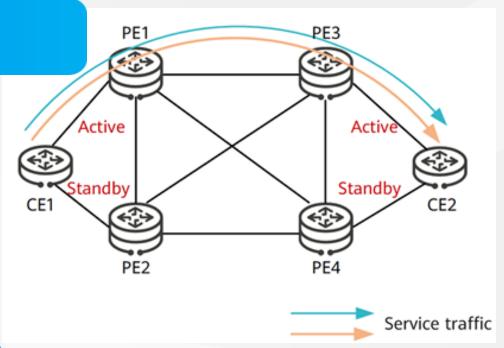
Contexto da Evolução

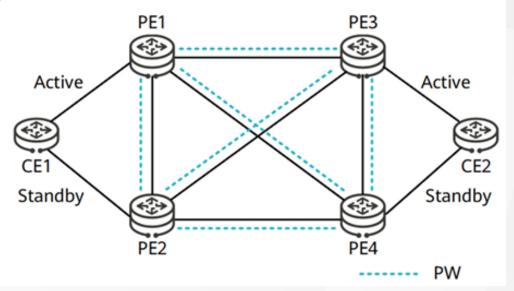
Problemas das Redes Atuais:

- Limitações de IPv4, expansão de 5G/cloud.
- VPNs Tradicionais: VPWS (P2P), VPLS (MP2MP), L3VPN.

Surgimento do EVPN:

- Unificação de controle (BGP), separação de planos (dados/controle).
- Suporte a SRv6, VXLAN e balanceamento de carga.


Desafios das VPNs Tradicionais


L2VPN (VPWS/VPLS):

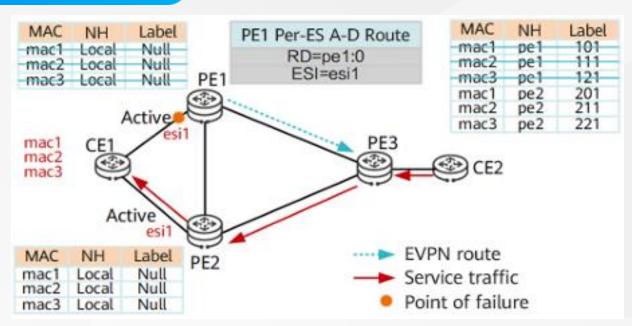
- Acesso single-active (links redundantes ociosos).
- Full-Mesh de PWs (escalabilidade limitada, alta complexidade).
- Aprendizado de MAC via flooding (lento, desperdício de banda).

L3VPN:

 Protocolos fragmentados (VPNv4/VPNv6), integração limitada com cloud.

Benefícios do EVPN

Eficiência:


- Acesso all-active (balanceamento de carga).
- Controle de BUM traffic (evita duplicação).

Operação Simplificada:

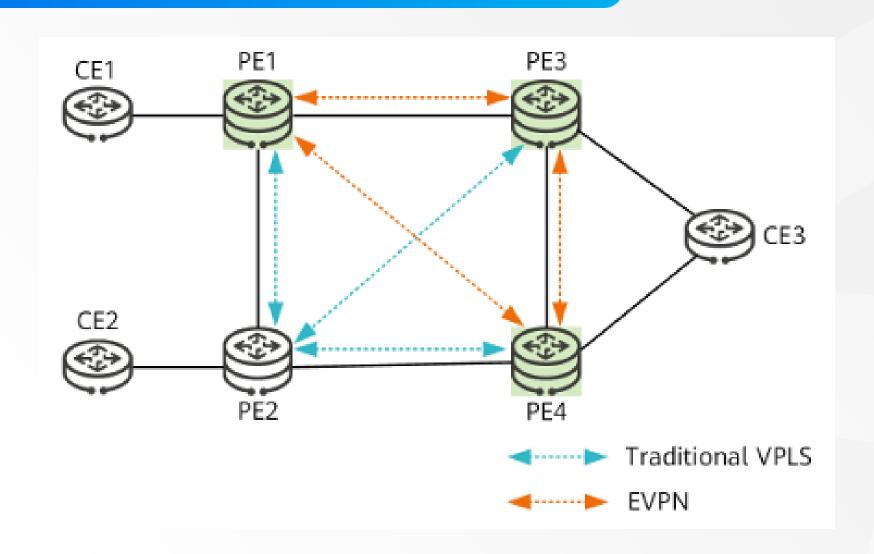
- Descoberta automática de peers (BGP Type 3).
- Eliminação de full-mesh (uso de Route Reflectors).

Convergência Rápida:

Atualização de rotas em 50 ms (exemplo: falha de link).

Comparação EVPN vs. VPN Tradicional

Recurso	VPN Tradicional	EVPN
Escalabilidade	Limitada (full-mesh PWs)	Alta (BGP RR)
Balanceamento	Apenas active/standby	All-active
Protocolos	Múltiplos (L2VPN/L3VPN)	Unificado (BGP EVPN)
Convergência	Lenta (segundos)	Rápida (milissegundos)

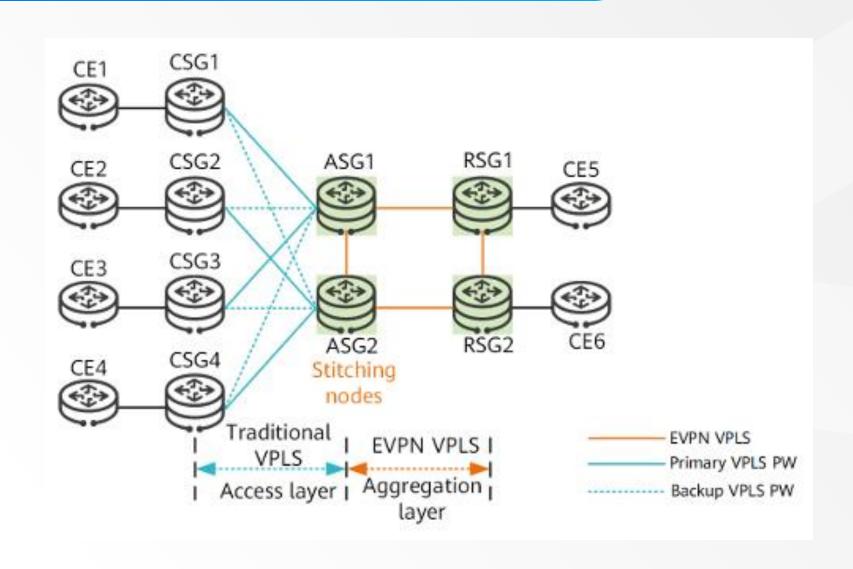

Opções de Evolução - Integração

Quando usar: Redes não hierárquicas.

Abordagem: Coexistência gradual (VPN + EVPN), migração node-by-node.

Vantagem: Zero downtime.

Opções de Evolução - Integração


Opções de Evolução - Interworking

Quando usar: Redes hierárquicas (ex: acesso/agregação)

Abordagem: "Stitching nodes" (nós de borda), upgrade por camadas.

Vantagem: Migração por Etapas

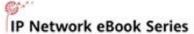
Opções de Evolução - Interworking

Futuro

Tendências:

- Unificação de unicast/multicast (controle plano único).
- EVPN como overlay universal (L2/L3).

Pilares Tecnológicos:


- Underlay: SRv6 (programabilidade) + BIERv6 (multicast).
- Meta: Rede end-to-end EVPN sobre SRv6.

Conclusões

- 1. EVPN resolve limitações críticas de VPNs tradicionais.
- 2. Evolução requer planejamento (serviços, topologia, protocolos).
- 3. Soluções de migração são flexíveis (interworking > redes hierárquicas).
- 4. Casos reais comprovam ganhos (ex: IX.br).

Bibliografia

Traditional VPN to EVPN Evolution Guide

Author: Peng Li

Information Digitalization and Experience Assurance (IDEA) Department

Conectar é a nossa especialidade!

Luiz Puppin
Head de Parcerias e Treinamentos

puppin.luiz@made4it.com.br +55 21 99184-9795